40 research outputs found

    Atomic resolution imaging of light elements in low-dimensional materials

    Get PDF
    The microscopic world at the atomic scale seems very remote from our daily lives. Still, we exploit exactly this world in our everyday technology like smartphones, batteries and solar cells, which rely on materials with controlled nanometer and atomic scale structures. To keep advancing such technologies it is therefore essential to understand how and why things happen at these small length scales. Despite that the most advanced electron microscopes can image the atomic structure of practically all materials, conventional imaging techniques lack the sensitivity to robustly image light atoms next to heavy ones. Consequently, a large class of materials containing both light and heavy atoms remains unexplored at the atomic scale.This thesis is dedicated to the atomic resolution imaging of light elements next to heavy ones in technologically relevant materials, by using a new sensitive imaging technique, called integrated differential phase contrast, in a scanning transmission electron microscope. Movies of light atoms and their motion in a two-dimensional material are recorded, which reveal the atom-by-atom evolution of defect structures, and also enabled the quantification of radiation damage caused by collisions with the fast primary electrons. Finally, the ultimate imaging sensitivity is demonstrated by imaging hydrogen atoms (the lightest element in the universe) in titanium. Overall, this thesis demonstrates that the entire periodic table is now territory of the electron microscope, which enables research of previously unexplored materials systems containing light elements, which may lead to crucial insights in the physics and chemistry of materials that contribute to technological advancement.

    Radiation damage and defect dynamics in 2D WS<sub>2</sub>:A low-voltage scanning transmission electron microscopy study

    Get PDF
    Modern low-voltage scanning transmission electron microscopes (STEMs) have been invaluable for the atomic scale characterization of two-dimensional (2D) materials. Nevertheless, the observation of intrinsic structures of semiconducting and insulating 2D materials with 60 kV-microscopes has remained problematic due to electron radiation damage. In recent years, ultralow-voltage microscopes have been developed with the prospects of minimizing radiation damage of such 2D materials, however, to date only ultralow-voltage TEM investigations of semiconducting and insulating 2D materials have been reported, but similar results using STEM, despite being more widely adopted, are still missing. Here we report a quantitative analysis of radiation damage and beam-induced defect dynamics in semiconducting 2D WS2 during 30 kV and 60 kV-STEM imaging, particularly by recording atomic resolution electrostatic potential movies using integrated differential phase contrast to visualize both the light sulfur and heavy tungsten atoms. Our results demonstrate that electron radiation damage of 2D WS2 aggravates by a factor of two when halving the electron beam energy from 60 keV to 30 keV, from which we conclude electronic excitation and ionization to be the dominant mechanism inducing defects and damage during low-voltage STEM imaging of semiconducting 2D materials

    Resolving hydrogen atoms at metal-metal hydride interfaces

    Get PDF
    Hydrogen as a fuel can be stored safely with high volumetric density in metals. It can, however, also be detrimental to metals causing embrittlement. Understanding fundamental behavior of hydrogen at atomic scale is key to improve the properties of metal-metal hydride systems. However, currently, there is no robust technique capable of visualizing hydrogen atoms. Here, we demonstrate that hydrogen atoms can be imaged unprecedentedly with integrated differential phase contrast, a recently developed technique performed in a scanning transmission electron microscope. Images of the titanium-titanium monohydride interface reveal remarkable stability of the hydride phase, originating from the interplay between compressive stress and interfacial coherence. We also uncovered, thirty years after three models were proposed, which one describes the position of the hydrogen atoms with respect to the interface. Our work enables novel research on hydrides and is extendable to all materials containing light and heavy elements, including oxides, nitrides, carbides and borides

    Real space imaging of hydrogen at a metal - metal hydride interface

    Get PDF
    Hydrogen as a prospective fuel can be stored safely with high volumetric density in metals. It can, however, also be detrimental to metals causing embrittlement. For a better understanding of these metal-metal hydride systems, and in particular their interfaces, real-space imaging of hydrogen with atomic resolution is required. However, hydrogen has not been imaged before at an interface. Moreover, to date, a robust technique that is capable to do such light-element imaging has not been demonstrated. Here, we show that integrated Differential Phase Contrast (iDPC), a recently developed imaging technique performed in an aberration corrected scanning transmission electron microscope, has this capability. Atomically sharp interfaces between hexagonal close-packed titanium and face-centered tetragonal titanium monohydride have been imaged, unambiguously resolving the hydrogen columns. Exploiting the fact that this monohydride has two types of columns with identical surrounding of the host Ti atom we have, 30 years after they were first proposed, finally resolved which one of the proposed structural models holds for the interface. Using both experimental and simulated images, we compare the iDPC technique with the currently more common annular bright field (ABF) technique, showing that iDPC is superior regarding complicating wave interference effects that may lead to erroneous detection of light element columns

    Real space imaging of hydrogen at a metal - metal hydride interface

    Get PDF
    Hydrogen as a prospective fuel can be stored safely with high volumetric density in metals. It can, however, also be detrimental to metals causing embrittlement. For a better understanding of these metal-metal hydride systems, and in particular their interfaces, real-space imaging of hydrogen with atomic resolution is required. However, hydrogen has not been imaged before at an interface. Moreover, to date, a robust technique that is capable to do such light-element imaging has not been demonstrated. Here, we show that integrated Differential Phase Contrast (iDPC), a recently developed imaging technique performed in an aberration corrected scanning transmission electron microscope, has this capability. Atomically sharp interfaces between hexagonal close-packed titanium and face-centered tetragonal titanium monohydride have been imaged, unambiguously resolving the hydrogen columns. Exploiting the fact that this monohydride has two types of columns with identical surrounding of the host Ti atom we have, 30 years after they were first proposed, finally resolved which one of the proposed structural models holds for the interface. Using both experimental and simulated images, we compare the iDPC technique with the currently more common annular bright field (ABF) technique, showing that iDPC is superior regarding complicating wave interference effects that may lead to erroneous detection of light element columns

    Imaging atomic motion of light elements in 2D materials with 30 kV electron microscopy

    Get PDF
    Scanning transmission electron microscopy (STEM) is the most widespread adopted tool for atomic scale characterization of two-dimensional (2D) materials. However, damage free imaging of 2D materials with electrons has remained problematic even with powerful low-voltage 60 kV-microscopes. An additional challenge is the observation of light elements in combination with heavy elements, particularly when recording fast dynamical phenomena. Here, we demonstrate that 2D WS2 suffers from electron radiation damage during 30 kV-STEM imaging, and we capture beam-induced defect dynamics in real-time by atomic electrostatic potential imaging using integrated differential phase contrast (iDPC)-STEM. The fast imaging of atomic electrostatic potentials with iDPC-STEM reveals the presence and motion of single sulfur atoms near defects and edges in WS2 that are otherwise invisible at the same imaging dose at 30 kV with conventional annular dark-field STEM, and has a vast speed and data processing advantage over electron detector camera based STEM techniques like electron ptychography

    Real-time imaging of atomic potentials in 2D materials with 30 keV electrons

    Get PDF
    Scanning transmission electron microscopy (STEM) is the most widespread adopted tool for atomic scale characterization of two-dimensional (2D) materials. Many 2D materials remain susceptible to electron beam damage, despite the standardized practice to reduce the beam energy from 200 keV to 80 or 60 keV. Although, all elements present can be detected by atomic electrostatic potential imaging using integrated differential phase contrast (iDPC) STEM or electron ptychography, capturing dynamics with atomic resolution and enhanced sensitivity has remained a challenge. Here, by using iDPC-STEM, we capture defect dynamics in 2D WS2_2 by atomic electrostatic potential imaging with a beam energy of only 30 keV. The direct imaging of atomic electrostatic potentials with high framerate reveals the presence and motion of single atoms near defects and edges in WS2_2 that are otherwise invisible with conventional annular dark-field STEM or cannot be captured sufficiently fast by electron ptychography
    corecore